Genetic mechanisms of critical illness in COVID-19

Alessandra Stella, Filippo Biscarini (Biostatistics, bioinformatics, quantitative genetics)

CNR-IBBA, Milan (Italy)

Genesi del progetto

Marzo 2020

- Epidemiologia dei primi mesi di pandemia
 - Ampia variabilità di impatto clinico dell'infezione
 - Distribuzioni diverse nelle diverse etnie
 - Confounding con altri fattori, non genetici
- Raccolta dati molto frammentaria
 - Varianti a geni candidati
 - ACE1/ACE2 Genes
 - ACE2 rs2285666 polymorphism
 - Effetti sull'ipertensione
 - X chromosome
 - Coordinamento ospedali lombardi non IRCCS

Project Gen-Covid

Coordinator: Università degli Studi di Siena (Prof. Alessandra Renieri: <u>https://sites.google.com/dbm.unisi.it/gen-covid</u>)

Linked to the "Host Genetics Initiative" (HGI, <u>https://www.covid19hg.org</u>)

GWAS

- Complessità genetica del carattere
- Effetti allelici
- Linkage disequilibrium
- Fenotipo

GEN-COVID biobank

- Biological samples
 (blood, leukocytes, DNA etc.) → GC-B
- Clinical data → GC-PR (patient registry)
- Exome-sequencing, SNP genotyping → GC-GDR (genetic data registry)

European Journal of Human Genetics https://doi.org/10.1038/s41431-020-00793-7

ARTICLE

Employing a systematic approach to biobanking and analyzing clinical and genetic data for advancing COVID-19 research

Sergio Daga (b^{1,2} · Chiara Fallerini (b^{1,2} · Margherita Baldassarri (b^{1,2} · Francesca Fava (b^{1,2,3} · Floriana Valentino^{1,2} · Gabriella Doddato^{1,2} · Elisa Benetti (b² · Simone Furini (b² · Annarita Giliberti^{1,2} · Rossella Tita (b³ · Sara Amitrano³ · Mirella Bruttini^{1,2,3} · Ilaria Meloni (b^{1,2} · Anna Maria Pinto (b³ · Francesco Raimondi (b⁴ · Alessandra Stella (b⁵ · Filippo Biscarini (b^{5,13} · Nicola Picchiotti (b^{6,7} · Marco Gori^{6,8} · Pietro Pinoli (b⁹ · Stefano Ceri (b⁹ · Maurizio Sanarico¹⁰ · Francis P. Crawley (b^{11,13} · Giovanni Birolo (b¹² · GEN-COVID Multicenter Study · Alessandra Renieri (b^{1,2,3} · Francesca Mari (b^{1,2,3} · Elisa Frullanti (b^{1,2})

ESHG

Does COVID-19 severity have a genetic component?

Covid-19 mortality risk:

- susceptibility to viral infection
- propensity to develop harmful inflammation

Susceptibility to infections and immune-mediated diseases are both known to be heritable \rightarrow **host genetic variants** (e.g. influenza, RSV, coronaviruses)

Covid-19 critical illness

distinct pathophysiology

GWAS for covid-19 critical illness

- ~ 4.5 million SNP variants
- **logistic regression model** (case/control) accounting for age, sex, deprivation decile, first 10 principal components

GWAS for covid-19 critical illness

- (top): GWAS results
- (bottom): meta-analysis(replication)
- Chr3: LZTFL1
- Chr6: *HLA-G*, *CCHCR1*
- Chr12: OAS1-OAS3
- Chr19: DPP9, TYK2
- Chr21: IFNAR2

- $h^2 = 0.065$

GWAS for covid-19 critical illness

- *IFNAR2, OAS1-3* → innate antiviral defenses
 - (interferon alpha and beta receptor subunit-2)
 - $(2'-5'-oligoadenylate synthetases) \rightarrow$ antiviral restriction enzyme activators
- *DPP9, TYK2* → **host-driven inflammation** (lung injury)
 - (dipeptidyl peptidase 9) → variants associated with idiopathic pulmonary fibrosis
 - (tyrosine-protein kinase)

TYK2 is a gene target for JAK inhibitors, e.g. baricitinib:

(Janus kinase inhibitors \rightarrow inflammatory disease, like rheumatoid arthritis)

Next steps

Ongoing activities:

- GWAS for clinical severity and for mortality/survival in cohorts of cases only (no healthy controls)
- Predictive models for:
 - Diagnosis of cases
 - Prognosis of clinical severity

Take-home messages

- Severe covid-19 ≠ mild/moderate covid-19
- There is a heritable component to susceptibility to Sars-Cov2 infection and to development of harmful inflammatory response → host genetic variants matter!
- Genomics can help to:
 - Make diagnosis
 - Predict prognosis
 - Understand the pathophysiology of the disease

